翻訳と辞書
Words near each other
・ Maximum Integrated Data Acquisition System
・ Maximum intensity projection
・ Maximum intercuspation
・ Maximum Jee&Jee
・ Maximum Joy
・ Maximum Joy (album)
・ Maximum landing weight
・ Maximum Leader
・ Maximum length sequence
・ Maximum life span
・ Maximum likelihood
・ Maximum likelihood estimation with flow data
・ Maximum likelihood sequence estimation
・ Maximum magnitude
・ Maximum medical improvement
Maximum modulus principle
・ Maximum Money Monster
・ Maximum operating depth
・ Maximum Overdrive
・ Maximum Overdrive (song)
・ Maximum Overload
・ Maximum Overload (Acid Drinkers album)
・ Maximum Overload (DragonForce album)
・ Maximum parcel level
・ Maximum parsimony (phylogenetics)
・ Maximum PC
・ Maximum Penetration
・ Maximum power
・ Maximum power point tracking
・ Maximum Power Point Tracking Using novel Bisection search Algorithm


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Maximum modulus principle : ウィキペディア英語版
Maximum modulus principle

In mathematics, the maximum modulus principle in complex analysis states that if ''f'' is a holomorphic function, then the modulus |''f'' | cannot exhibit a true local maximum that is properly within the domain of ''f''.
In other words, either ''f'' is a constant function, or, for any point ''z''0 inside the domain of ''f'' there exist other points arbitrarily close to ''z''0 at which |''f'' | takes larger values.
==Formal statement==
Let ''f'' be a function holomorphic on some connected open subset ''D'' of the complex plane ℂ and taking complex values. If ''z''0 is a point in ''D'' such that
:|f(z_0)|\ge |f(z)|
for all ''z'' in a neighborhood of ''z''0, then the function ''f'' is constant on ''D''.
By switching to the reciprocal, we can get the minimum modulus principle. It states that if ''f'' is holomorphic within a bounded domain ''D'', continuous up to the boundary of ''D'', and non-zero at all points, then |''f'' (z)| takes its minimum value on the boundary of ''D''.
Alternatively, the maximum modulus principle can be viewed as a special case of the open mapping theorem, which states that a nonconstant holomorphic function maps open sets to open sets. If |''f''| attains a local maximum at ''z'', then the image of a sufficiently small open neighborhood of ''z'' cannot be open. Therefore, ''f'' is constant.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Maximum modulus principle」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.